2 resultados para multiple sclerosis

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: People with relapsing remitting MS (PwRRMS) suffer disproportionate decrements in gait under dual-task conditions, when walking and a cognitive task are combined. There has been much less investigation of the impact of cognitive demands on balance. This study investigated whether: (1) PwRRMS show disproportionate decrements in postural stability under dual-task conditions compared to healthy controls; (2) dual-task decrements are associated with everyday dual-tasking difficulties. In addition, the impact of mood, fatigue and disease severity on dual-tasking were also examined. Methods: 34 PwRRMS and 34 matched controls completed cognitive (digit span) and balance (movement of centre of pressure on a Biosway, on stable and unstable surfaces) tasks under single and dual-task conditions. Everyday dual-tasking was measured using the DTQ. Mood was measured by the HADS. Fatigue was measured via the MFIS. Results: No differences in age, gender, years of education, estimated pre-morbid IQ or baseline digit span between the groups. Compared to healthy controls, PwRRMS showed a significantly greater decrement in postural stability under dual-task conditions on an unstable surface (p=0.007), but not a stable surface (p=0.679). PwRRMS reported higher levels of everyday dual-tasking difficulties (p<0.001). Balance decrement scores were not correlated with everyday dual-tasking difficulties, or with fatigue. Stable surface balance decrement scores were significantly associated with levels of anxiety (rho=0.527, p=0.001) and depression (rho=0.451, p=0.007). Conclusion: RRMS causes difficulties with dual-tasking, impacting balance, particularly under challenging conditions, which may contribute to an increased risk of gait difficulties and falls. The striking relationship between anxiety/depression and dual-task decrement suggests that worry may be contributing to dual-task difficulties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis describes the application of multispectral imaging to several novel oximetry applications. Chapter 1 motivates optical microvascular oximetry, outlines oxygen transport in the body, describes the theory of oximetry, and describes the challenges associated with in vivo oximetry, in particular imaging through tissue. Chapter 2 reviews various imaging techniques for quantitative in vivo oximetry of the microvasculature, including multispectral and hyperspectral imaging, photoacoustic imaging, optical coherence tomography, and laser speckle techniques. Chapter 3 describes a two-wavelength oximetry study of two microvascular beds in the anterior segment of the eye: the bulbar conjunctival and episcleral microvasculature. This study reveals previously unseen oxygen diffusion from ambient air into the bulbar conjunctival microvasculature, altering the oxygen saturation of the bulbar conjunctiva. The response of the bulbar conjunctival and episcleral microvascular beds to acute mild hypoxia is quantified and the rate at which oxygen diffuses into bulbar conjunctival vessels is measured. Chapter 4 describes the development and application of a highly novel non-invasive retinal angiography technique: Oximetric Ratio Contrast Angiography (ORCA). ORCA requires only multispectral imaging and a small perturbation of blood oxygen saturation to produce angiographic sequences. A pilot study of ORCA in human subjects was conducted. This study demonstrates that ORCA can produce angiographic sequences with features such as sequential vessel filling and laminar flow. The application and challenges of ORCA are discussed, with emphasis on comparison with other angiography techniques, such as fluorescein angiography. Chapter 5 describes the development of a multispectral microscope for oximetry in the spinal cord dorsal vein of rats. Measurements of blood oxygen saturation are made in the dorsal vein of both healthy rats, and in rats with the Experimental autoimmune encephalomyelitis (EAE) disease model of multiple sclerosis. The venous blood oxygen saturation of EAE disease model rats was found to be significantly lower than that of healthy controls, indicating increased oxygen uptake from blood in the EAE disease model of multiple sclerosis. Chapter 6 describes the development of video-rate red eye oximetry; a technique which could enable stand-off oximetry of the blood-supply of the eye with high temporal resolution. The various challenges associated with video-rate red eye oximetry are investigated and their influence quantified. The eventual aim of this research is to track circulating deoxygenation perturbations as they arrive in both eyes, which could provide a screening method for carotid artery stenosis, which is major risk-factor for stroke. However, due to time constraints, it was not possible to thoroughly investigate if video-rate red eye can detect such perturbations. Directions and recommendations for future research are outlined.